We introduce an error resilient distributed computing method based on an extension of the channel polarization phenomenon to distributed algorithms. The method leverages an algorithmic split operation that transforms two identical compute nodes to slow and fast workers, which parallels the channel split operation in Polar Codes. This operation preserves the average runtime, analogous to the conservation of Shannon capacity in channel polarization. By leveraging a recursive construction in a similar spirit to the Fast Fourier Transform, this method synthesizes virtual compute nodes with dispersed return time distributions, which we call computational polarization. We show that the runtime distributions form a functional martingale processes, identify their limiting distributions in closed-form expressions together with non-asymptotic convergence rates, and prove strong convergence results in Banach spaces. We provide an information-theoretic lower bound on the overall runtime of any coded computation method and show that the computational polarization approach asymptotically achieves the optimal runtime for computing linear functions. An important advantage is the near linear time decoding procedure, which is significantly cheaper than Maximum Distance Separable codes.
翻译:我们引入了一种基于频道极化现象扩展到分布式算法的有误分布式计算方法。 这种方法利用一种算法分割操作, 将两个相同的计算节点转换成慢速工人, 与极地代码中的频道分割操作平行。 此项操作保持平均运行时间, 类似于保护频道极化的香农能力。 这种方法在快速 Fourier 变换的类似精神下利用循环构造, 将虚拟计算节点合成为分散的返回时间分布, 我们称之为计算极化。 我们显示运行时间分配形成一个功能性马丁格进程, 确定在封闭式表达形式中的限制分布, 以及非简易聚合率, 并证明Banach 空间的强烈融合结果 。 我们为任何编码计算方法的总体运行时间提供了一种更低的信息理论约束, 并显示计算极化方法在瞬间实现了计算线性函数的最佳运行时间。 一个重要的优点是接近线性时间分解程序, 其比最短距离的距离值代码要便宜得多 。