Counting the independent sets of a graph is a classical #P-complete problem, even in the bipartite case. We give an exponential-time approximation scheme for this problem which is faster than the best known algorithm for the exact problem. The running time of our algorithm on general graphs with error tolerance $\varepsilon$ is at most $O(2^{0.2680n})$ times a polynomial in $1/\varepsilon$. On bipartite graphs, the exponential term in the running time is improved to $O(2^{0.2372n})$. Our methods combine techniques from exact exponential algorithms with techniques from approximate counting. Along the way we generalise (to the multivariate case) the FPTAS of Sinclair, Srivastava, \v{S}tefankovi\v{c} and Yin for approximating the hard-core partition function on graphs with bounded connective constant. Also, we obtain an FPTAS for counting independent sets on graphs with no vertices with degree at least 6 whose neighbours' degrees sum to 27 or more. By a result of Sly, there is no FPTAS that applies to all graphs with maximum degree 6 unless $\mbox{P}=\mbox{NP}$.
翻译:计算独立的图表组是一个经典的 #P- 完整的问题, 即使是在两边的案例中。 我们给出了这个问题的指数- 时间近似方案, 其速度比准确问题的已知算法速度要快。 在一般图表上, 差容度为$\varepsilon$( varepsilon$) 的算法运行时间是 $O( 2 ⁇ 0. 0. 2680n}) 乘以 1 /\\ varepsilon$ 的多数值。 在双边的图形上, 运行时间的指数性期限改进为$( 2 ⁇ 0. 2372n) 。 我们的方法是将精确的指数性算法技术与点算技术结合起来。 沿我们的一般方法( 多变量案), 辛克莱、 斯里瓦斯塔瓦塔、 和 Yin 的 FPTAS 运行时间是 最大温度为 6 或 最高温度为 SPAS 。 除非 FPBAS 最高温度为 。