We introduce a general definition of hybrid transforms for constructible functions. These are integral transforms combining Lebesgue integration and Euler calculus. Lebesgue integration gives access to well-studied kernels and to regularity results, while Euler calculus conveys topological information and allows for compatibility with operations on constructible functions. We conduct a systematic study of such transforms and introduce two new ones: the Euler-Fourier and Euler-Laplace transforms. We show that the first has a left inverse and that the second provides a satisfactory generalization of Govc and Hepworth's persistent magnitude to constructible sheaves, in particular to multi-parameter persistent modules. Finally, we prove index-theoretic formulae expressing a wide class of hybrid transforms as generalized Euler integral transforms. This yields expectation formulae for transforms of constructible functions associated to (sub)level-sets persistence of random Gaussian filtrations.
翻译:我们为可建函数引入了混合变异的一般定义。 这些是结合 Lebesgue 集成和 Euler 微积分的综合变异。 Lebesgue 集成使得人们有机会获得研究周密的内核和常规结果, 而 Euler 微积分则传递了地形学信息, 并且能够与可建函数的操作兼容。 我们对这些变异进行系统化的研究, 并引入了两个新的变异。 我们发现, 第一种变异是左向的, 而第二种变异则为Govc 和 Hepworth 的可建外层的持久规模提供了令人满意的概括, 特别是多参数的持久性模块。 最后, 我们证明, 指数- 理论公式代表了广泛的混合变异为通用的 Euler 整体变异变。 这产生了与( 亚级) 随机高斯 过滤的持久性相关的可建构函数的变换制的预期公式 。