This paper considers the strong error analysis of the Euler and fast Euler methods for nonlinear overdamped generalized Langevin equations driven by the fractional noise. The main difficulty lies in handling the interaction between the fractional Brownian motion and the singular kernel, which is overcome by means of the Malliavin calculus and fine estimates of several multiple singular integrals. Consequently, these two methods are proved to be strongly convergent with order nearly $\min\{2(H+\alpha-1), \alpha\}$, where $H \in (1/2,1)$ and $\alpha\in(1-H,1)$ respectively characterize the singularity levels of fractional noises and singular kernels in the underlying equation. This result improves the existing convergence order $H+\alpha-1$ of Euler methods for the nonlinear case, and gives a positive answer to the open problem raised in [4]. As an application of the theoretical findings, we further investigate the complexity of the multilevel Monte Carlo simulation based on the fast Euler method, which turns out to behave better performance than the standard Monte Carlo simulation when computing the expectation of functionals of the considered equation.
翻译:本文审议了对非线性超常Langevin通用公式的Euler和快速Euler方法的强烈错误分析,这些方法是由分数噪音驱动的,主要困难在于如何处理分数布朗运动和单内核之间的相互作用,后者通过Malliavin callculus和若干单元整体的精细估计加以克服。因此,这两种方法被证明非常接近于近 $=%2(Häalpha-1)和 malpha ⁇ $(alpha ⁇ $)的顺序。在应用理论结论时,我们进一步调查基于快速Euler方法的多层次蒙特卡洛模拟的复杂性。 快速的Euler方法显示分数噪音和单内核的单内核的奇异性水平,在考虑的非线性案例时,该结果改进了Euler方法的现有趋同值$Häalpha-1美元(Euler方法),并对[4]中提出的未决问题作出积极的答复。我们进一步调查了基于快速Euler方法的多层次蒙特卡洛模拟的复杂性,在考虑的功能性模拟中表现优于标准卡的模拟时,其预期。