After substantial progress over the last 15 years, the "algebraic CSP-dichotomy conjecture" reduces to the following: every local constraint satisfaction problem (CSP) associated with a finite idempotent algebra is tractable if and only if the algebra has a Taylor term operation. Despite the tremendous achievements in this area (including recently announce proofs of the general conjecture), there remain examples of small algebras with just a single binary operation whose CSP resists direct classification as either tractable or NP-complete using known methods. In this paper we present some new methods for approaching such problems, with particular focus on those techniques that help us attack the class of finite algebras known as "commutative idempotent binars" (CIBs). We demonstrate the utility of these methods by using them to prove that every CIB of cardinality at most 4 yields a tractable CSP.
翻译:在过去15年取得实质性进展之后,“热镜CSP-切除直射”的假设值被降低到以下程度:与有限一等能代数有关的每个局部约束性满意度问题(CSP)只有在代数具有泰勒任期运作的情况下才能被移动。尽管在这一领域取得了巨大成就(包括最近公布了一般猜想的证据),但是仍然有一些小型代数,只有一个二进制操作,而CSP抵制直接分类为可移植或使用已知方法完成NP的二进制操作。在本文件中,我们提出了一些处理这类问题的新方法,特别侧重于那些帮助我们攻击被称为“混合一等能二进制”的有限代数类的技术。我们通过这些方法证明这些方法的有用性,即利用它们来证明,在最多4个基点的每个CIB中,每个基点都会产生可移植的CSP。