Graph spanners are well-studied and widely used both in theory and practice. In a recent breakthrough, Chechik and Wulff-Nilsen [CW18] improved the state-of-the-art for light spanners by constructing a $(2k-1)(1+\epsilon)$-spanner with $O(n^{1+1/k})$ edges and $O_\epsilon(n^{1/k})$ lightness. Soon after, Filtser and Solomon [FS19] showed that the classic greedy spanner construction achieves the same bounds The major drawback of the greedy spanner is its running time of $O(mn^{1+1/k})$ (which is faster than [CW16]). This makes the construction impractical even for graphs of moderate size. Much faster spanner constructions do exist but they only achieve lightness $\Omega_\epsilon(kn^{1/k})$, even when randomization is used. The contribution of this paper is deterministic spanner constructions that are fast, and achieve similar bounds as the state-of-the-art slower constructions. Our first result is an $O_\epsilon(n^{2+1/k+\epsilon'})$ time spanner construction which achieves the state-of-the-art bounds. Our second result is an $O_\epsilon(m + n\log n)$ time construction of a spanner with $(2k-1)(1+\epsilon)$ stretch, $O(\log k\cdot n^{1+1/k})$ edges and $O_\epsilon(\log k\cdot n^{1/k})$ lightness. This is an exponential improvement in the dependence on $k$ compared to the previous result with such running time. Finally, for the important special case where $k=\log n$, for every constant $\epsilon>0$, we provide an $O(m+n^{1+\epsilon})$ time construction that produces an $O(\log n)$-spanner with $O(n)$ edges and $O(1)$ lightness which is asymptotically optimal. This is the first known sub-quadratic construction of such a spanner for any $k = \omega(1)$. To achieve our constructions, we show a novel deterministic incremental approximate distance oracle, which may be of independent interest.


翻译:平面平面平面平面平面平面平面平面平面平面平面。 不久之后, Filtser 和 Solomon [FS19] 显示, 典型的贪婪滑面平面建筑实现了相同的界限。 贪婪滑面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面,平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面,平面平面,平面平面平面平面平面平面平面,平面平面平面平面平面平面平面,平面平面平面,平面平面平面平面平面平面平面平面平面,平面,平面平面平面平面,平面平面平面平面,平面平面平面平面,平面平面平面平面平面平面,平面,平面平面平面,平面,平面平面平面,平面平面平面平面平面,平面平面平面,平面平面平面平面平面平面平面,平面平面平面平面平面平面,平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面,平面平面,

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员