In clinical trials, there is potential to improve precision and reduce the required sample size by appropriately adjusting for baseline variables in the statistical analysis. This is called covariate adjustment. Despite recommendations by the U.S. Food and Drug Administration and the European Medicines Agency in favor of covariate adjustment, it remains underutilized leading to inefficient trials. We address two obstacles that make it challenging to use covariate adjustment. A first obstacle is the incompatibility of many covariate adjusted estimators with commonly used stopping boundaries in group sequential designs (GSDs). A second obstacle is the uncertainty at the design stage about how much precision gain will result from covariate adjustment; an incorrect projection of a covariate's prognostic value risks an over- or underpowered trial. To address these obstacles, we extend the theory of information-monitoring in GSDs to handle covariate adjusted estimators. In particular, we propose a new statistical method that modifies the original estimator so that it becomes compatible with GSDs, while increasing or leaving unchanged the estimator's precision. This is needed since many covariate adjusted estimators don't satisfy the key property (i.e., independent information increments) needed to apply commonly used stopping boundaries in GSDs. Our approach allows the use of any asymptotically linear estimator, which covers many estimators used in randomized trials. Building on this, we propose using an information adaptive design, that is, continuing the trial until the required information level is achieved. Such a design adapts to the amount of precision gain due to covariate adjustment, resulting in trials that are correctly powered and that fully leverage prognostic baseline variables; this can lead to faster, more efficient trials, without sacrificing validity or power.


翻译:在临床试验中,有可能通过在统计分析中适当调整基线变量来提高精确度和减少所需的抽样规模。这被称为共变调整。尽管美国食品和药品管理局和欧洲药品管理局提出了支持共变调整的建议,但这种调整仍然没有得到充分利用,导致试验效率低下。我们解决了两个障碍,使得使用共变调整有困难。第一个障碍是许多共同变量调整的估算器与在集团序列设计中常用停止边界的原估算器不相容。第二个障碍是设计阶段的不确定性,其准确性增益将有多少来自共变调整;对共变预测的预测值的不正确预测有超动或低动的试验风险。为了克服这些障碍,我们扩展了全球药品管理局的信息监测理论,以便处理经调整的估算器调整。我们提出了一个新的统计方法,以调整原估算器与SGSD相接轨设计(GDs)兼容,同时增加或保持估算器的精确度。这需要的是,因为许多变变变差设计设计值值值值值的预测值值值值值值值值值值值值值,因此需要将自动调整,从而可以完全使用SQealalalaling ladeal。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员