Temporal Neural Networks (TNNs), inspired from the mammalian neocortex, exhibit energy-efficient online sensory processing capabilities. Recent works have proposed a microarchitecture framework for implementing TNNs and demonstrated competitive performance on vision and time-series applications. Building on these previous works, this work proposes TNN7, a suite of nine highly optimized custom macros developed using a predictive 7nm Process Design Kit (PDK), to enhance the efficiency, modularity and flexibility of the TNN design framework. TNN prototypes for two applications are used for evaluation of TNN7. An unsupervised time-series clustering TNN delivering competitive performance can be implemented within 40 uW power and 0.05 mm^2 area, while a 4-layer TNN that achieves an MNIST error rate of 1% consumes only 18 mW and 24.63 mm^2. On average, the proposed macros reduce power, delay, area, and energy-delay product by 14%, 16%, 28%, and 45%, respectively. Furthermore, employing TNN7 significantly reduces the synthesis runtime of TNN designs (by more than 3x), allowing for highly-scaled TNN implementations to be realized.
翻译:由哺乳动物新皮层神经网络(TNNS)所启发的哺乳动物时空神经网络(TNNS),展示了节能的在线感官处理能力。最近的工作提出了实施TNNS的微结构框架,并展示了愿景和时间序列应用方面的竞争性性能。在以前这些工程的基础上,这项工作提出了TNN7(TNN7),这是利用预测7nm进程设计包(PDK)开发的9个高度优化定制定制的宏观组合,目的是提高TNNN设计框架的效率、模块性和灵活性。两个应用的TNNT原型(TNN)用于评价TN7. 不受监督的时间序列集群TNNN提供竞争性性能可以在40个UW电力和0.05毫米+2区域内实施,而4级TNNN可实现1%的误差率只消耗18 mW和24.63毫米。平均而言,拟议的宏观将电力、延迟、面积和停能产品分别减少14%、16%、28%和45%。此外,使用TNNNNT设计的合成运行时间将大大压缩到高度实现。