We measure the color shifts present in colorized images from the ADE20K dataset, when colorized by the automatic GAN-based DeOldify model. We introduce fine-grained local and regional bias measurements between the original and the colorized images, and observe many colorization effects. We confirm a general desaturation effect, and also provide novel observations: a shift towards the training average, a pervasive blue shift, different color shifts among image categories, and a manual categorization of colorization errors in three classes.
翻译:我们测量了ADE20K数据集的彩色图像中的颜色变化,这些图像以自动 GAN 为基础的 Delifizy 模型为颜色。 我们引入了原始图像和彩色图像之间细微的本地和区域偏差测量,并观察了多种色化效果。 我们确认了一般的消肥效果,并提供了新的观察:向培训平均值的转变,普遍的蓝色变化,图像类别之间不同的颜色变化,以及三个类别的色彩错误的手工分类。