The self-supervised Masked Image Modeling (MIM) schema, following "mask-and-reconstruct" pipeline of recovering contents from masked image, has recently captured the increasing interest in the multimedia community, owing to the excellent ability of learning visual representation from unlabeled data. Aiming at learning representations with high semantics abstracted, a group of works attempts to reconstruct non-semantic pixels with large-ratio masking strategy, which may suffer from "over-smoothing" problem, while others directly infuse semantics into targets in off-line way requiring extra data. Different from them, we shift the perspective to the Fourier domain which naturally has global perspective and present a new Masked Image Modeling (MIM), termed Geminated Gestalt Autoencoder (Ge$^2$-AE) for visual pre-training. Specifically, we equip our model with geminated decoders in charge of reconstructing image contents from both pixel and frequency space, where each other serves as not only the complementation but also the reciprocal constraints. Through this way, more robust representations can be learned in the pre-trained encoders, of which the effectiveness is confirmed by the juxtaposing experimental results on downstream recognition tasks. We also conduct several quantitative and qualitative experiments to investigate the learning behavior of our method. To our best knowledge, this is the first MIM work to solve the visual pre-training through the lens of frequency domain.


翻译:自我监督的蒙面图像模型(MIM) 模型在“ 图像- 重新构建” 从遮面图像中回收内容的“ 图像- 重新构建” 管道后, 获得了对多媒体界的日益浓厚的兴趣, 这是因为从未贴标签的数据中学习视觉代表的极强能力。 以高语义抽取的高语义为目的, 一组工作尝试用大鼠遮面战略来重建非语义像素, 这可能受到“ 过度移动” 问题的影响, 而其他人则直接将语义转换成离线目标, 需要额外数据。 与它们不同, 我们将视角转换到Fourier域, 这个域自然具有全球视角, 并展示新的蒙面图像模型模型(MIM), 称为Geed Gestalt Autencoder (Ge$2$- AE) 用于视觉前培训。 具体地说, 我们的模型配备了精美的解变形像仪, 来重建图像内容, 从平面和频率空间, 重建图像内容, 不仅作为第一补充, 而且还是相互制约, 也是相互制约,, 通过我们 的 学习 学习 方法, 通过这个 学习 方法, 我们的下游过程, 通过 学习 学习, 学习 方法, 可以确认 学习 学习 方法, 通过 学习 学习 的 的 学习 的 方法 的 学习, 学习 。 通过 的 的 的 方法, 通过 学习 学习 学习 学习 学习 方法, 。

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员