Bipartite graphs model the relationships between two disjoint sets of entities in several applications and are naturally drawn as 2-layer graph drawings. In such drawings, the two sets of entities (vertices) are placed on two parallel lines (layers), and their relationships (edges) are represented by segments connecting vertices. Methods for constructing 2-layer drawings often try to minimize the number of edge crossings. We use vertex splitting to reduce the number of crossings, by replacing selected vertices on one layer by two (or more) copies and suitably distributing their incident edges among these copies. We study several optimization problems related to vertex splits to minimize the number of crossings. While we prove that some variants are NP-complete, we obtain polynomial-time algorithms for others. We run our algorithms on a benchmark set of bipartite graphs representing the relationships between human anatomical structures and cell types.


翻译:双部分图案建构两组不同实体在多个应用程序中的关系模式,这些实体自然被画成两层图画。在这样的图画中,两组实体(脊椎)被放在两条平行线上(层),两组实体(边缘)的关系由连接脊椎的部位代表。建造两层图的方法往往试图尽量减少边缘过境点的数量。我们使用顶点分割来减少过境点的数量,将一个层上选定的脊椎替换为两个(或更多)副本,并在这些拷贝中适当分配其事件边缘。我们研究了与脊椎分割有关的几个优化问题,以尽量减少跨越次数。虽然我们证明有些变量是NP的完整,但我们为其他人获得了多层时算法。我们用一组双部分图谱来计算我们的算法,这些图谱是代表人类解剖结构和细胞类型之间的关系。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
130+阅读 · 2023年1月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Dataflow graphs as complete causal graphs
Arxiv
0+阅读 · 2023年3月16日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Dataflow graphs as complete causal graphs
Arxiv
0+阅读 · 2023年3月16日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
23+阅读 · 2018年10月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员