A graph is $2$-planar if it has local crossing number two, that is, it can be drawn in the plane such that every edge has at most two crossings. A graph is maximal $2$-planar if no edge can be added such that the resulting graph remains $2$-planar. A $2$-planar graph on $n$ vertices has at most $5n-10$ edges, and some (maximal) $2$-planar graphs -- referred to as optimal $2$-planar -- achieve this bound. However, in strong contrast to maximal planar graphs, a maximal $2$-planar graph may have fewer than the maximum possible number of edges. In this paper, we determine the minimum edge density of maximal $2$-planar graphs by proving that every maximal $2$-planar graph on $n\ge 5$ vertices has at least $2n$ edges. We also show that this bound is tight, up to an additive constant. The lower bound is based on an analysis of the degree distribution in specific classes of drawings of the graph. The upper bound construction is verified by carefully exploring the space of admissible drawings using computer support.
翻译:平面图是2美元平面图,如果它有本地的二号交叉口,也就是说,它可以在平面上绘制,使每个边缘在最多两个交叉口都有。如果没有边缘可以添加,则图是最高值为$2的平面图,因此所产生的图是$2的平面图仍然是2美元的平面。一面图是$00的平面图,最多为$50-10美元的边缘,一些(最大)2美元的平面图(称为最佳的2美元平面图)可以达到这一界限。然而,与最高平面图相比,最高值为$2美元的平面图可能比最大可能的边缘数要少。在本文中,我们确定最大值为$2美元平面图的最低边缘密度。通过证明5美元平面图上的最大值为$2美元的平面图至少有2美元的边缘,我们还表明,这一界限是紧凑的,最高值为添加的常数。下限的平面图是根据对图表特定类别的空间分布度分布的分析,根据对图表的深度分布进行的分析,以可接受的计算机图绘制方式进行仔细核查。</s>