We present a new approach for synthesizing novel views of people in new poses. Our novel differentiable renderer enables the synthesis of highly realistic images from any viewpoint. Rather than operating over mesh-based structures, our renderer makes use of diffuse Gaussian primitives that directly represent the underlying skeletal structure of a human. Rendering these primitives gives results in a high-dimensional latent image, which is then transformed into an RGB image by a decoder network. The formulation gives rise to a fully differentiable framework that can be trained end-to-end. We demonstrate the effectiveness of our approach to image reconstruction on both the Human3.6M and Panoptic Studio datasets. We show how our approach can be used for motion transfer between individuals; novel view synthesis of individuals captured from just a single camera; to synthesize individuals from any virtual viewpoint; and to re-render people in novel poses. Code and video results are available at https://github.com/GuillaumeRochette/HumanViewSynthesis.
翻译:我们展示了一种新的方法,将人们的新观点合成为新的外形。 我们的新颖的可变造型器从任何角度都能合成高度现实的图像。 我们的造型器没有在基于网状结构上操作,而是利用直接代表人类骨骼结构的弥散高斯原始材料。 塑造这些原始材料可以产生高维潜伏图像的结果, 然后通过一个解码网络将其转换成 RGB 图像。 配方产生了一个完全不同的框架, 可以经过培训的端到端。 我们展示了我们在Human3. 6M 和 Panplopic Studio数据集的图像重建方法的有效性。 我们展示了我们的方法如何用于个人之间的移动转移; 个人从一个摄像头中捕捉到的新观点合成; 从任何虚拟角度合成个人; 以及用新面的图像重新复制人。 代码和视频结果可在 https://github.com/GuillaumeRochette/HumanViewSynsise.