Data valuation is a growing research field that studies the influence of individual data points for machine learning (ML) models. Data Shapley, inspired by cooperative game theory and economics, is an effective method for data valuation. However, it is well-known that the Shapley value (SV) can be computationally expensive. Fortunately, Jia et al. (2019) showed that for K-Nearest Neighbors (KNN) models, the computation of Data Shapley is surprisingly simple and efficient. In this note, we revisit the work of Jia et al. (2019) and propose a more natural and interpretable utility function that better reflects the performance of KNN models. We derive the corresponding calculation procedure for the Data Shapley of KNN classifiers/regressors with the new utility functions. Our new approach, dubbed soft-label KNN-SV, achieves the same time complexity as the original method. We further provide an efficient approximation algorithm for soft-label KNN-SV based on locality sensitive hashing (LSH). Our experimental results demonstrate that Soft-label KNN-SV outperforms the original method on most datasets in the task of mislabeled data detection, making it a better baseline for future work on data valuation.


翻译:---- "数据估值(Data Valuation)"是研究机器学习模型中每个数据点影响的一个研究领域。数据Shapley(Data Shapley)是一种有效的数据估值方法,受合作博弈和经济学的启发。然而,众所周知,Shapley值(SV)的计算可能会很费时间。幸运的是,Jia等(2019)表明,对于K最近邻(KNN)模型,Data Shapley的计算非常简单和高效。在本文中,我们重新审视了Jia等人(2019)的工作,并提出了一种更自然和可解释的效用函数,更好地反映了KNN模型的性能。我们推导了相应的计算程序,适用于具有新效用函数的KNN分类器/回归器的Data Shapley。我们的新方法,称为软标记KNN-SV,实现了与原始方法相同的时间复杂度。我们进一步提供了一种基于局部敏感哈希(Locality Sensitive Hashing,LSH)的软标记KNN-SV的有效近似算法。我们的实验结果表明,软标记KNN-SV在大多数数据集上优于原始方法,在误标记数据检测任务上表现更好,可以成为未来研究数据估值的更好基准。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员