Wasserstein barycenters define averages of probability measures in a geometrically meaningful way. Their use is increasingly popular in applied fields, such as image, geometry or language processing. In these fields however, the probability measures of interest are often not accessible in their entirety and the practitioner may have to deal with statistical or computational approximations instead. In this article, we quantify the effect of such approximations on the corresponding barycenters. We show that Wasserstein barycenters depend in a H{\"o}lder-continuous way on their marginals under relatively mild assumptions. Our proof relies on recent estimates that quantify the strong convexity of the dual quadratic optimal transport problem and a new result that allows to control the modulus of continuity of the push-forward operation under a (not necessarily smooth) optimal transport map.
翻译:瓦塞斯坦百货中心以具有几何意义的方式界定概率计量的平均值。 在图像、几何或语言处理等应用领域,使用概率计量越来越受欢迎。 但是,在这些领域,人们往往无法完全获得相关概率计量,从业人员可能不得不处理统计或计算近似值。在本篇文章中,我们量化了这种近似值对相应的百货中心的影响。我们显示,瓦塞斯坦百货中心在相对温和的假设下,在边缘地区持续依赖H(o)ldrlder)。我们的证据依据最近的估计,即量化了双四极最佳运输问题的强烈共融和性,以及能够控制在最佳运输图(不一定平滑)下持续推进运行模式的新结果。</s>