While the ability to build quantum computers is improving dramatically, developing quantum algorithms is limited and relies on human insight and ingenuity. Although a number of quantum programming languages have been developed, it is challenging for software developers who are not familiar with quantum computing to learn and use these languages. It is, therefore, necessary to develop tools to support developing new quantum algorithms and programs automatically. This paper proposes AutoQC, an approach to automatically synthesizing quantum circuits using the neural network from input and output pairs. We consider a quantum circuit a sequence of quantum gates and synthesize a quantum circuit probabilistically by prioritizing with a neural network at each step. The experimental results highlight the ability of AutoQC to synthesize some essential quantum circuits at a lower cost.
翻译:虽然建立量子计算机的能力正在大幅提高,但开发量子算法是有限的,并依赖于人类的洞察力和才智。虽然已经开发了一些量子程序语言,但对于不熟悉量子计算软件的软件开发者来说,学习和使用这些语言是困难的。因此,有必要开发工具,支持自动开发新的量子算法和程序。本文提出AutoQC, 这是一种利用神经网络从输入和输出对子中自动合成量子电路的方法。我们认为量子电路是量子门的序列,通过在每一步与神经网络进行优先排序来合成量子电路。实验结果凸显了AutoQC以较低成本合成某些基本量子电路的能力。