A binary constant weight code is a type of error-correcting code with a wide range of applications. The problem of finding a binary constant weight code has long been studied as a combinatorial optimization problem in coding theory. In this paper, we propose a quantum search algorithm for binary constant weight codes. Specifically, the search problem is newly formulated as a quadratic unconstrained binary optimization (QUBO) and Grover adaptive search (GAS) is used for providing the quadratic speedup. Focusing on the inherent structure of the problem, we derive an upper bound on the minimum of the objective function value and a lower bound on the exact number of solutions. In our algebraic analysis, it was found that this proposed algorithm is capable of reducing the number of required qubits, thus enhancing the feasibility. Additionally, our simulations demonstrated that it reduces the query complexities by 63% in the classical domain and 31% in the quantum domain. The proposed approach may be useful for other quantum search algorithms and optimization problems.
翻译:二进制常量代码是一种包含多种应用的错误校正代码。 找到二进制常量代码的问题早已作为编码理论中的组合优化问题进行了研究。 在本文中, 我们建议了二进制常量代码的量子搜索算法。 具体地说, 搜索问题是新形成的, 是一种二次不限制的二进制优化( QUBO) 和 Grover 适应性搜索( GAS), 用于提供二次加速。 侧重于问题的内在结构, 我们从目标函数值的最小值中得出一个上限, 而在精确的解决方案数上下限 。 在我们的代数分析中, 发现这一拟议的算法能够减少所需的qubit数量, 从而增强可行性。 此外, 我们的模拟表明, 它将传统域的查询复杂性降低63%, 量域的查询复杂性降低 31% 。 所提议的方法对于其他量子搜索算法和优化问题可能有用 。