Existing global convergence guarantees of (stochastic) gradient descent do not apply to practical deep networks in the practical regime of deep learning beyond the neural tangent kernel (NTK) regime. This paper proposes an algorithm, which is ensured to have global convergence guarantees in the practical regime beyond the NTK regime, under a verifiable condition called the expressivity condition. The expressivity condition is defined to be both data-dependent and architecture-dependent, which is the key property that makes our results applicable for practical settings beyond the NTK regime. On the one hand, the expressivity condition is theoretically proven to hold data-independently for fully-connected deep neural networks with narrow hidden layers and a single wide layer. On the other hand, the expressivity condition is numerically shown to hold data-dependently for deep (convolutional) ResNet with batch normalization with various standard image datasets. We also show that the proposed algorithm has generalization performances comparable with those of the heuristic algorithm, with the same hyper-parameters and total number of iterations. Therefore, the proposed algorithm can be viewed as a step towards providing theoretical guarantees for deep learning in the practical regime.


翻译:现有(随机)梯度梯度下沉的现有全球趋同保证并不适用于实际深层次的深层次网络,而实际的深层学习制度超出了神经相干内核(NTK)制度,本文件提出一种算法,确保在NTK制度之外,在可核实的条件下,在NT制度之外,在实际制度中有全球趋同的保证; 表达性条件的定义是既取决于数据,又依赖结构,这是使我们的结果适用于NTK制度以外实际环境的关键属性; 一方面,从理论上看,表达性条件证明,数据是完全连接的深层神经网络所依赖的,其隐藏层和单一的宽层。 另一方面,从数字上看,表达性条件是以数据为依存,与不同标准图像数据集的分批正常化同时保持数据(演进)ResNet。 我们还表明,拟议的算法的概括性表现与超光度算算法的性能相当,具有同样的超度参数和迭数。因此,拟议的算法可被视为在为深层实际学习制度提供理论保证方面迈出的一步。

1
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月7日
VIP会员
相关VIP内容
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员