The empirical success of deep convolutional networks on tasks involving high-dimensional data such as images or audio suggests that they can efficiently approximate certain functions that are well-suited for such tasks. In this paper, we study this through the lens of kernel methods, by considering simple hierarchical kernels with two or three convolution and pooling layers, inspired by convolutional kernel networks. These achieve good empirical performance on standard vision datasets, while providing a simple enough description of the functional space to shed light on their inductive bias. We show that the RKHS consists of additive models of interaction terms between patches, and that its norm encourages structured spatial similarities between these terms through pooling layers. We then provide generalization bounds which illustrate how pooling yields improved sample complexity guarantees when the target function presents such regularities.


翻译:深层革命网络在涉及高维数据的任务(如图像或音频)上所取得的经验性成功表明,它们能够有效地接近某些适合此类任务的职能。在本文件中,我们通过内核方法的透镜研究这一问题,方法是在革命内核网络的启发下,考虑具有两三个交集层和集合层的简单等级内核。这些网络在标准视觉数据集方面取得了良好的经验性表现,同时提供了功能空间的简单、足够描述,以揭示其感应偏差。我们表明,RKHS由补丁之间互动条件的添加模型组成,其规范鼓励通过集合层在这些术语之间形成结构上的空间相似性。我们随后提供了一般化的界限,以说明集聚产能如何在目标功能显示这种规律时提高样本复杂性的保障。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
1+阅读 · 2021年8月2日
Arxiv
0+阅读 · 2021年8月1日
Arxiv
3+阅读 · 2018年8月12日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
相关论文
Arxiv
1+阅读 · 2021年8月2日
Arxiv
0+阅读 · 2021年8月1日
Arxiv
3+阅读 · 2018年8月12日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年5月31日
Top
微信扫码咨询专知VIP会员