Parameter identifiability is a structural property of an ODE model for recovering the values of parameters from the data (i.e., from the input and output variables). This property is a prerequisite for meaningful parameter identification in practice. In the presence of nonidentifiability, it is important to find all functions of the parameters that are identifiable. The existing algorithms check whether a given function of parameters is identifiable or, under the solvability condition, find all identifiable functions. However, this solvability condition is not always satisfied, which presents a challenge. Our first main result is an algorithm that computes all identifiable functions without any additional assumptions, which is the first such algorithm as far as we know. Our second main result concerns the identifiability from multiple experiments (with generically different inputs and initial conditions among the experiments). For this problem, we prove that the set of functions identifiable from multiple experiments is what would actually be computed by input-output equation-based algorithms (whether or not the solvability condition is fulfilled), which was not known before. We give an algorithm that not only finds these functions but also provides an upper bound for the number of experiments to be performed to identify these functions. We provide an implementation of the presented algorithms.


翻译:参数的可识别性是从数据中恢复参数值的 ODE 模型( 即输入和输出变量) 的结构属性。 此属性是实际中有意义参数识别的一个先决条件。 在存在不可识别性的情况下, 找到可识别参数的所有功能很重要。 现有的算法检查参数的某一功能是否可识别, 或者在可溶性条件下, 找到所有可识别的功能。 但是, 这个可溶性条件并不总是得到满足, 是一个挑战。 我们的第一个主要结果是一个计算法, 计算所有可识别的功能, 而没有额外的假设, 这是我们所知道的第一个算法。 我们的第二个主要结果涉及多重实验的可识别性( 输入和初始条件一般不同 ) 。 对此问题, 我们证明, 从多个实验中可识别的功能组是实际用基于输入- 输出方程式的算法算法( 是否满足了可溶性条件) 来计算, 这是一项挑战。 我们给出的算法不仅找到这些功能, 而且还提供了执行这些实验的上限 。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月27日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年5月21日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员