Different families of Runge-Kutta-Nystr\"om (RKN) symplectic splitting methods of order 8 are presented for second-order systems of ordinary differential equations and are tested on numerical examples. They show a better efficiency than state-of-the-art symmetric compositions of 2nd-order symmetric schemes and RKN splitting methods of orders 4 and 6 for medium to high accuracy. For some particular examples, they are even more efficient than extrapolation methods for high accuracies and integrations over relatively short time intervals.
翻译:Runge-Kutta-Nystr\"om(RKN)第8号单数分解法的不同家族为普通差分方程式的二阶系统提供了第8号单数分解法,并用数字实例进行了测试。它们比第2号对称法的最新对称组成和RKN第4和第6号单数分解法的中到高精度效率更高。在某些特定例子中,它们比在相对较短的时间内对高偏差和集成法的外推法更有效率。