We provide a minimax optimal estimation procedure for F and W in matrix valued linear models Y = F W + Z where the parameter matrix W and the design matrix F are unknown but the latter takes values in a known finite set. The proposed finite alphabet linear model is justified in a variety of applications, ranging from signal processing to cancer genetics. We show that this allows to separate F and W uniquely under weak identifiability conditions, a task which is not doable, in general. To this end we quantify in the noiseless case, that is, Z = 0, the perturbation range of Y in order to obtain stable recovery of F and W. Based on this, we derive an iterative Lloyd's type estimation procedure that attains minimax estimation rates for W and F for Gaussian error matrix Z. In contrast to the least squares solution the estimation procedure can be computed efficiently and scales linearly with the total number of observations. We confirm our theoretical results in a simulation study and illustrate it with a genetic sequencing data example.


翻译:我们为F和W提供了一种最小的最佳估计程序,其矩阵价值为线性模型Y=F W + Z,其中参数矩阵W和设计矩阵F未知,但后者的数值为已知的有限数组。提议的有限字母线性模型在从信号处理到癌症遗传学等各种应用中是合理的。我们表明,这允许在微弱的可识别性条件下将F和W单独区分开来,一般来说,这项任务是行不通的。为此,我们在无噪音案例中量化了Y的扰动范围,即Z=0,以便稳定恢复F和W。基于这一点,我们得出了反复的劳埃德类型估计程序,该程序达到高斯误差矩阵Z的W和F的微量估计率。与最小方的可辨识性解决方案相比,可以高效地计算估计程序,以观察总数为线性尺度。我们通过模拟研究来确认我们的理论结果,并以基因测序数据为例。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月9日
Arxiv
0+阅读 · 2021年4月7日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
Top
微信扫码咨询专知VIP会员