In this paper, we are interested in the problem of smoothing parameter selection in nonparametric curve estimation under dependent errors. We focus on kernel estimation and the case when the errors form a general stationary sequence of martingale difference random variables where neither linearity assumption nor ``all moments are finite'' are required.We compare the behaviors of the smoothing bandwidths obtained by minimizing either the unknown average squared error, the theoretical mean average squared error, a Mallows-type criterion adapted to the dependent case and the family of criteria known as generalized cross validation (GCV) extensions of the Mallows' criterion. We prove that these three minimizers and those based on the GCV family are first-order equivalent in probability. We give also a normal asymptotic behavior of the gap between the minimizer of the average square error and that of the Mallows-type criterion. This is extended to the GCV family.Finally, we apply our theoretical results to a specific case of martingale difference sequence, namely the Auto-Regressive Conditional Heteroscedastic (ARCH(1)) process.A Monte-carlo simulation study, for this regression model with ARCH(1) process, is conducted.
翻译:在本文中,我们关心在非参数曲线估计中根据依赖性差错平滑选择参数的问题。我们侧重于内核估计,当错误形成马丁格尔差异随机变量的一般固定序列时,即不需要线性假设或“所有时刻都是有限的” 。我们比较了通过尽量减少未知的平均平均平方差差、理论平均平均平方差差、适用于依赖性差的Mallows类标准以及称为马洛标准普遍交叉验证扩展的标准的系列而获得的平滑带宽度行为。我们证明这三个最小化器和基于GCV家族的最小化器和随机变异器在概率上相当于一级。我们还对平均平方差最小化器与Mallows类标准之间的差距进行了正常的无序行为。这被延伸至GCV家族。最后,我们将我们的理论结果应用到一个特定的马丁格尔差异序列,即自动递增梯变变变模型(AR1(1))进程。A-Controcolimal 进行该模型分析研究。