Consider a monopolist selling $n$ items to an additive buyer whose item values are drawn from independent distributions $F_1,F_2,\ldots,F_n$ possibly having unbounded support. Unlike in the single-item case, it is well known that the revenue-optimal selling mechanism (a pricing scheme) may be complex, sometimes requiring a continuum of menu entries. Also known is that simple mechanisms with a bounded number of menu entries can extract a constant fraction of the optimal revenue. Nonetheless, whether an arbitrarily high fraction of the optimal revenue can be extracted via a bounded menu size remained open. We give an affirmative answer: for every $n$ and $\varepsilon>0$, there exists $C=C(n,\varepsilon)$ s.t. mechanisms of menu size at most $C$ suffice for obtaining $(1-\varepsilon)$ of the optimal revenue from any $F_1,\ldots,F_n$. We prove upper and lower bounds on the revenue-approximation complexity $C(n,\varepsilon)$ and on the deterministic communication complexity required to run a mechanism achieving such an approximation.
翻译:将商品价值从独立分销中提取的单价一元1, F_2,\2,\ldots, F_n$, 可能得到无限制的支持。 与单一项目的情况不同, 众所周知, 收入最佳销售机制( 定价方案) 可能很复杂, 有时需要一系列菜单条目。 众所周知, 菜单条目限制数的简单机制可以提取最佳收入的固定部分。 然而, 限制菜单大小是否仍然开放, 最佳收入的任意高部分可以通过约束式菜单大小提取。 我们给出肯定的答案: 每美元和瓦列普西隆美元, 都有 美元=C( n,\ varepsilon) s. t. 的菜单大小机制, 最多为 $C, 足以从任何F_ 1,\ldots, F_n. 中获取最优收入的$ ( 1\ varepsilon) 。 我们证明, 最高和下限限制于收入- 配置复杂度 $, c,\\ varepsilon) 实现这种复杂度的通信机制。