The Fr\'echet mean generalizes the concept of a mean to a metric space setting. In this work we consider equivariant estimation of Fr\'echet means for parametric models on metric spaces that are Riemannian manifolds. The geometry and symmetry of such a space is encoded by its isometry group. Estimators that are equivariant under the isometry group take into account the symmetry of the metric space. For some models there exists an optimal equivariant estimator, which necessarily will perform as well or better than other common equivariant estimators, such as the maximum likelihood estimator or the sample Fr\'echet mean. We derive the general form of this minimum risk equivariant estimator and in a few cases provide explicit expressions for it. In other models the isometry group is not large enough relative to the parametric family of distributions for there to exist a minimum risk equivariant estimator. In such cases, we introduce an adaptive equivariant estimator that uses the data to select a submodel for which there is an MRE. Simulations results show that the adaptive equivariant estimator performs favorably relative to alternative estimators.


翻译:Fr\'echet 的意思是泛泛地描述度空间设置的平均值概念。 在这项工作中, 我们考虑对 Fr\'echet 进行等同估计, 意指测量空间的参数模型。 这种空间的几何和对称由它的等分数组进行编码。 在异差组下, 等分数组的测算器考虑到度空间的对称性。 对于某些模型来说, 存在一个最佳的等异估测器, 它必然会与其他常见的等异估测器( 如最大可能性估测器或样本 Fr\'echet 等) 一样或更好。 我们从中得出这种最小风险等异差估量组的一般形式, 并在少数情况下为它提供明确的表达方式。 在其他模型中, 等异差组与测量分布的对称式组相比不够大, 从而存在一个最小的风险等异性估测算器。 在这种情况下, 我们引入一个适应性等异估测测算器的估测算器, 例如, 我们引入一个适应性等异性估测算器的相对测算器, 将数据用来选择一个测量结果, 的测算结果, 以显示一个可选制成的测算结果。

0
下载
关闭预览

相关内容

专知会员服务
47+阅读 · 2021年4月24日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年2月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月31日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
47+阅读 · 2021年4月24日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年2月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员