We study in this paper lower bounds for the generalization error of models derived from multi-layer neural networks, in the regime where the size of the layers is commensurate with the number of samples in the training data. We show that unbiased estimators have unacceptable performance for such nonlinear networks in this regime. We derive explicit generalization lower bounds for general biased estimators, in the cases of linear regression and of two-layered networks. In the linear case the bound is asymptotically tight. In the nonlinear case, we provide a comparison of our bounds with an empirical study of the stochastic gradient descent algorithm. The analysis uses elements from the theory of large random matrices.


翻译:我们在本文中研究了多层神经网络模型的概括误差的下限,即层的大小与培训数据样本数量相称的制度;我们表明,对这个制度中的非线性网络而言,公正的估计者的表现令人无法接受;我们为一般偏向估计者、线性回归和两层网络的情况,得出明确的概括误差的下限;在线性情况下,线性误差是微乎其微的。在非线性情况下,我们比较了我们的界限,对随机梯度梯度下行算法进行了实证研究。分析使用了大随机矩阵理论中的一些要素。

0
下载
关闭预览

相关内容

【2021新书】编码艺术,Coding Art,284页pdf
专知会员服务
75+阅读 · 2021年1月10日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员