Linear approximation approaches suffer from Gibbs oscillations when approximating functions with singularities. ENO-SR resolution is a local approach avoiding oscillations and with a full order of accuracy, but a loss of regularity of the approximant appears. The goal of this paper is to introduce a new approach having both properties of full accuracy and regularity. In order to obtain it, we propose a three-stage algorithm: first, the data is smoothed by subtracting an appropriate non-smooth data sequence; then a chosen high order linear approximation operator is applied to the smoothed data and finally, an approximation with the proper singularity structure is reinstated by correcting the smooth approximation with the non-smooth element used in the first stage. We apply this approach to both cases of point-value data and of cell-average data, using the 4-point subdivision algorithm in the second stage. Using the proposed approach we are able to construct approximations with high precision, with high piecewise regularity, and without diffusion nor oscillations in the presence of discontinuities.
翻译:Gibbs 近似线性方法在与奇数相近时会受到 Gibbs 振动作用的影响。 ENO-SR 分辨率是一种避免振动和完全精确的局部方法,但出现了近似值的规律性损失。 本文的目的是引入一种既具有完全准确性和规律性两种特性的新方法。 为了获得这一方法,我们建议了一个三阶段算法: 首先,数据通过减去适当的非移动数据序列而平稳; 然后对平滑的数据应用一个选定的高顺序线性线性近似操作器; 最后,通过纠正与第一阶段使用的非移动元素的平稳近似,恢复了与适当奇数结构的近似。 我们用这种方法对点值数据和细胞平均数据两种情况都适用, 在第二阶段使用 4 点亚形算法。 使用拟议方法,我们可以用高精度、高碎度的规律性来构建近似值,在不连续状态中不扩散或振动。