We present a new algorithm, the efficient jet marching method (EJM), for computing the quasipotential and its gradient for two-dimensional SDEs. The quasipotential is a potential-like function for nongradient SDEs that gives asymptotic estimates for the invariant probability measure, expected escape times from basins of attractors, and maximum likelihood escape paths. The quasipotential is a solution to an optimal control problem with an anisotropic cost function which can be solved for numerically via Dijkstra-like label-setting methods. Previous Dijkstra-like quasipotential solvers have displayed in general 1st order accuracy in the mesh spacing. However, by utilizing higher order interpolations of the quasipotential as well as more accurate approximations of the minimum action paths (MAPs), EJM achieves second-order accuracy for the quasipotential and nearly second-order for its gradient. Moreover, by using targeted search neighborhoods for the fastest characteristics following the ideas of Mirebeau, EJM also enjoys a reduction in computation time. This highly accurate solver enables us to compute the prefactor for the WKB approximation for the invariant probability measure and the Bouchet-Reygner sharp estimate for the expected escape time for the Maier-Stein SDE. Our codes are available on GitHub.
翻译:我们提出了一个新的算法,即用于计算二维SDE的准潜能及其梯度的高效喷气行进法(EJM ) 。 准潜力是非梯度 SDEs 的潜在类似功能,它提供不变概率测量的无线间推值以及最小动作路径(MAPs)的更精确近似近似值。 准潜力是使用亚异体热量成本功能解决最佳控制问题的最佳办法, 可以通过Dijkstra类标签设置方法来进行数字化的设定。 以前的Dijkstra类准潜能解答器在网格间间隔中以一般顺序的准确度显示。 然而,通过使用准潜能值的更高顺序间推法和最小动作路径(MAPs)的更精确近似值, EJMM 实现了准概率的第二级精确度, 其梯度路径几乎是第二级。 此外, EJMEMM 也享有计算时间的缩短。 这个高度精确的解算器让我们对WKBER的预估测前位值进行精确的精确度, 以及用于我们所能测测测的SEREGER 的精确度的精确度测算。