Multi-scale problems, where variables of interest evolve in different time-scales and live in different state-spaces. can be found in many fields of science. Here, we introduce a new recursive methodology for Bayesian inference that aims at estimating the static parameters and tracking the dynamic variables of these kind of systems. Although the proposed approach works in rather general multi-scale systems, for clarity we analyze the case of a heterogeneous multi-scale model with 3 time-scales (static parameters, slow dynamic state variables and fast dynamic state variables). The proposed scheme, based on nested filtering methodology of P\'erez-Vieites et al. (2018), combines three intertwined layers of filtering techniques that approximate recursively the joint posterior probability distribution of the parameters and both sets of dynamic state variables given a sequence of partial and noisy observations. We explore the use of sequential Monte Carlo schemes in the first and second layers while we use an unscented Kalman filter to obtain a Gaussian approximation of the posterior probability distribution of the fast variables in the third layer. Some numerical results are presented for a stochastic two-scale Lorenz 96 model with unknown parameters.
翻译:多尺度问题, 在不同的时间尺度中, 有趣的变量会演变, 并生活在不同的状态空间中。 在许多科学领域都可以找到。 在这里, 我们为巴伊西亚的推论引入一种新的循环方法, 旨在估计静态参数和跟踪这些系统动态变量。 虽然拟议方法在相当一般的多尺度系统中起作用, 为了清晰起见, 我们分析一个具有3个时间尺度( 静态参数、 慢动态状态变量和快速动态状态变量) 的多尺度模型的案例。 根据P\' erez- Vieites et al. (2018年) 的嵌巢过滤法, 将三层相互交织的过滤技术结合在一起, 以局部和吵闹的观察顺序来估计参数和两组动态变量的顺位概率分布。 我们探索在第一和第二层使用连续的蒙特卡洛 计划, 而我们则使用一个不鼓励的卡尔曼过滤器来获取第三层快速变量的远位概率分布的近似近度( 2018年) 。 一些数字结果以未知的 96 二次模型为未知的 。