We propose a sparse end-to-end multi-person pose regression framework, termed QueryPose, which can directly predict multi-person keypoint sequences from the input image. The existing end-to-end methods rely on dense representations to preserve the spatial detail and structure for precise keypoint localization. However, the dense paradigm introduces complex and redundant post-processes during inference. In our framework, each human instance is encoded by several learnable spatial-aware part-level queries associated with an instance-level query. First, we propose the Spatial Part Embedding Generation Module (SPEGM) that considers the local spatial attention mechanism to generate several spatial-sensitive part embeddings, which contain spatial details and structural information for enhancing the part-level queries. Second, we introduce the Selective Iteration Module (SIM) to adaptively update the sparse part-level queries via the generated spatial-sensitive part embeddings stage-by-stage. Based on the two proposed modules, the part-level queries are able to fully encode the spatial details and structural information for precise keypoint regression. With the bipartite matching, QueryPose avoids the hand-designed post-processes and surpasses the existing dense end-to-end methods with 73.6 AP on MS COCO mini-val set and 72.7 AP on CrowdPose test set. Code is available at https://github.com/buptxyb666/QueryPose.
翻译:我们建议一个稀疏的端到端多人构成回归框架,称为 QueryPose, 它可以直接从输入图像中预测多人关键点序列。 现有的端到端方法依靠密集的表达方式来保存空间细节和结构, 以精确关键点本地化。 但是, 密集的范例在推断过程中引入复杂和冗余的后处理程序。 在我们的框架里, 每个人类实例都由几个与实例级查询相关的可学习的空间认知部分部分查询编码。 首先, 我们建议空间部分嵌入生成模块(SPEGM), 考虑本地空间关注机制, 以生成若干空间敏感部分嵌入器, 其中包含空间细节和结构信息, 用于加强部分级查询。 其次, 我们引入选取性透模模模模模块(SIM), 通过生成的空间敏感部分嵌入阶段嵌入部分, 分阶段嵌入。 根据两个拟议模块, 部分级别查询能够完全将空间细节和结构信息编码编码编码用于精确的关键点回归 。 与双部分匹配、 SS- AS- SS- AS- SS- AS- AS- 后端测试 Q- serve- serve- supol- suption AS- supol- supol- Qard- Qard- supol- supol- suption AS- AS- AS- AS- supol- AS- AS- AS- semb- suption- suption- suption- sal- suption- sal- suption- suption- suption- sal- suption- suption- suption- sal- sal- suption- suption- suption- sal- sal- suption- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- AS- AS- sal- sal- sal- set- AS- AS- sem- sem- AS- AS- AS- AS- AS- AS- set- semet- AS- AS- AS- 和 AS- AS-