In an era where scientific experiments can be very costly, multi-fidelity emulators provide a useful tool for cost-efficient predictive scientific computing. For scientific applications, the experimenter is often limited by a tight computational budget, and thus wishes to (i) maximize predictive power of the multi-fidelity emulator via a careful design of experiments, and (ii) ensure this model achieves a desired error tolerance with confidence. Existing design methods, however, do not jointly tackle objectives (i) and (ii). We propose a novel stacking design approach which addresses both goals. Using a recently proposed multi-level Gaussian process emulator model, our stacking design provides a sequential approach for designing multi-fidelity runs such that a desired prediction error of $\epsilon > 0$ is met under regularity conditions. We then prove a novel cost complexity theorem which, under this multi-level Gaussian process emulator, establishes a bound on the computation cost (for training data simulation) needed to ensure a prediction bound of $\epsilon$. This result provides novel insights on conditions under which the proposed multi-fidelity approach improves upon a standard Gaussian process emulator which relies on a single fidelity level. Finally, we demonstrate the effectiveness of stacking designs in a suite of simulation experiments and an application to finite element analysis.
翻译:在一个科学实验费用高昂、多纤维模拟器能够提供成本高效预测科学计算有用工具的时代,在科学应用方面,实验者往往受到严格计算预算的限制,因此希望(一) 通过仔细设计实验,最大限度地扩大多纤维模拟器的预测力,以及(二) 确保这一模型能够有信心地达到理想的差错容忍度。然而,现有的设计方法并不联合处理目标(一)和(二),我们提议一种针对这两个目标的新颖的堆叠设计方法。我们使用最近提议的多层次高斯进程模拟模型,我们的堆叠设计为设计多纤维模拟器提供了一种顺序方法,设计多纤维模拟器时,需要采用这样的顺序方法,以便设计出一个理想的美元大于0美元的预测误差,从而在常规条件下满足了预期的错误。我们随后证明这种模型具有新的成本复杂性,在这个多层次高斯进程模拟器模拟器的模拟器下,将必要的计算成本(用于培训数据模拟)绑定,以确保对美元和美元之间的比值进行预测。这一结果,我们最终对一个标准值的精确度分析方法提供了一种我们所拟议的多层次的精确度分析。