Many common correlation structures assumed for data can be described through latent Gaussian models. When Bayesian inference is carried out, it is required to set the prior distribution for scale parameters that rules the model components, possibly allowing to incorporate prior information. This task is particularly delicate and many contributions in the literature are devoted to investigating such aspects. We focus on the fact that the scale parameter controls the prior variability of the model component in a complex way since its dispersion is also affected by the correlation structure and the design. To overcome this issue that might confound the prior elicitation step, we propose to let the user specify the marginal prior of a measure of dispersion of the model component, integrating out the scale parameter, the structure and the design. Then, we analytically derive the implied prior for the scale parameter. Results from a simulation study, aimed at showing the behavior of the estimators sampling properties under the proposed prior elicitation strategy, are discussed. Lastly, some real data applications are explored to investigate prior sensitivity and allocation of explained variance among model components.
翻译:为数据设想的许多共同相关结构可以通过潜伏高斯模型来描述。 当进行巴伊西亚推断时, 需要为标定模型组成部分的比值参数设定先前的分布, 从而可能允许将模型组成部分纳入先前的信息。 这项任务特别微妙, 文献中的许多贡献都致力于调查这些方面。 我们侧重于一个事实, 比例参数以复杂的方式控制模型组成部分先前的变异性, 因为模型的分散性也受到了相关结构和设计的影响。 为了克服这一问题, 这个问题可能会混淆先前的引出步骤, 我们提议让用户在模型组成部分的分散性测量之前指定边际值, 将比例参数、 结构和设计整合起来。 然后, 我们从分析中得出比例参数之前隐含的隐含值。 讨论模拟研究的结果, 目的是显示根据拟议的前引出战略取样属性的估算者的行为。 最后, 探索一些真实的数据应用, 以调查模型组成部分之间解释的差异的先前敏感性和分配情况。