The detection of anomalies in time series data is crucial in a wide range of applications, such as system monitoring, health care or cyber security. While the vast number of available methods makes selecting the right method for a certain application hard enough, different methods have different strengths, e.g. regarding the type of anomalies they are able to find. In this work, we compare six unsupervised anomaly detection methods with different complexities to answer the questions: Are the more complex methods usually performing better? And are there specific anomaly types that those method are tailored to? The comparison is done on the UCR anomaly archive, a recent benchmark dataset for anomaly detection. We compare the six methods by analyzing the experimental results on a dataset- and anomaly type level after tuning the necessary hyperparameter for each method. Additionally we examine the ability of individual methods to incorporate prior knowledge about the anomalies and analyse the differences of point-wise and sequence wise features. We show with broad experiments, that the classical machine learning methods show a superior performance compared to the deep learning methods across a wide range of anomaly types.
翻译:时间序列数据中异常现象的检测在系统监测、医疗保健或网络安全等广泛应用中至关重要。 大量可用的方法使得选择适合某种应用的正确方法变得足够困难, 但不同方法的优点不同, 例如它们能够找到的异常情况的类型。 在这项工作中,我们比较了六种未经监督的异常现象检测方法,而其复杂程度不同,以解答问题: 较复杂的方法通常效果更好吗? 是否这些方法有特定的异常类型? 比较是在UCR异常情况档案上进行的,这是最近用来检测异常情况的基准数据集。 我们比较了六种方法,在对每一方法的必要超参数进行调后,对数据集和异常类型水平的实验结果进行了分析。 此外,我们还考察了个别方法是否有能力纳入关于异常情况的知识,分析点和顺序不同特征。 我们通过广泛的实验显示,古典机器学习方法显示的性能优于各种异常类型深度学习方法。