Appropriate evaluation and experimental design are fundamental for empirical sciences, particularly in data-driven fields. Due to the successes in computational modeling of languages, for instance, research outcomes are having an increasingly immediate impact on end users. As the gap in adoption by end users decreases, the need increases to ensure that tools and models developed by the research communities and practitioners are reliable, trustworthy, and supportive of the users in their goals. In this position paper, we focus on the issues of evaluating visual text analytics approaches. We take an interdisciplinary perspective from the visualization and natural language processing communities, as we argue that the design and validation of visual text analytics include concerns beyond computational or visual/interactive methods on their own. We identify four key groups of challenges for evaluating visual text analytics approaches (data ambiguity, experimental design, user trust, and "big picture" concerns) and provide suggestions for research opportunities from an interdisciplinary perspective.
翻译:适当的评价和实验设计是经验科学的基础,特别是在数据驱动领域。例如,由于在计算语言模型方面的成功,研究结果对终端用户的影响越来越直接。随着终端用户采用的差距缩小,需要增加以确保研究界和从业人员开发的工具和模型可靠、可信和支持用户的目标。在本立场文件中,我们侧重于评价视觉文本分析方法的问题。我们从可视化和自然语言处理社区采取跨学科观点,因为我们认为视觉文本分析的设计和验证包括了除计算或视觉/交互方法以外的问题。我们确定了评估视觉文本分析方法的四组关键挑战(数据模糊性、实验设计、用户信任和“大图象”问题),并从跨学科角度提出研究机会的建议。