Online controlled experiments (A/B tests) have become the gold standard for learning the impact of new product features in technology companies. Randomization enables the inference of causality from an A/B test. The randomized assignment maps end users to experiment buckets and balances user characteristics between the groups. Therefore, experiments can attribute any outcome differences between the experiment groups to the product feature under experiment. Technology companies run A/B tests at scale -- hundreds if not thousands of A/B tests concurrently, each with millions of users. The large scale poses unique challenges to randomization. First, the randomized assignment must be fast since the experiment service receives hundreds of thousands of queries per second. Second, the variant assignments must be independent between experiments. Third, the assignment must be consistent when users revisit or an experiment enrolls more users. We present a novel assignment algorithm and statistical tests to validate the randomized assignments. Our results demonstrate that not only is this algorithm computationally fast but also satisfies the statistical requirements -- unbiased and independent.
翻译:在线控制实验(A/B测试)已成为学习技术公司新产品特征影响的金标准。随机化使得能够从A/B测试中推断因果关系。随机化的派任用户绘制了终端用户的地图,以试验桶,平衡各组之间的用户特征。因此,实验可以将试验组之间的任何结果差异归因于试验中的产品特征。技术公司在规模上同时进行A/B测试 -- -- 以百万用户同时进行数百次甚至数千次A/B测试。大型测试给随机化带来了独特的挑战。首先,随机化的派任必须快速,因为实验服务每秒接受几十万次查询。第二,变式派任必须在试验之间独立。第三,当用户重新审视或试验注册更多用户时,任务必须一致。我们提出了新的派任算法和统计测试,以验证随机化任务。我们的结果表明,这一算法不仅在计算上快速,而且还符合统计要求 -- -- 公正和独立。