This paper considers the numerical integration of semilinear evolution PDEs using the high order linearly implicit methods developped in a previous paper in the ODE setting. These methods use a collocation Runge--Kutta method as a basis, and additional variables that are updated explicitly and make the implicit part of the collocation Runge--Kutta method only linearly implicit. In this paper, we introduce several notions of stability for the underlying Runge--Kutta methods as well as for the explicit step on the additional variables necessary to fit the context of evolution PDE. We prove a main theorem about the high order of convergence of these linearly implicit methods in this PDE setting, using the stability hypotheses introduced before. We use nonlinear Schr\''odinger equations and heat equations as main examples but our results extend beyond these two classes of evolution PDEs. We illustrate our main result numerically in dimensions 1 and 2, and we compare the efficiency of the linearly implicit methods with other methods from the litterature. We also illustrate numerically the necessity of the stability conditions of our main result.
翻译:本文考虑了使用ODE 设置中前一份文件所发展的高顺序线性隐含方法的半线性进化 PDE 数字集成问题。 这些方法使用同线性Lunge-Kutta 方法作为基础,另外,还明确更新了同线性龙格-Kutta 方法的隐含部分,只是线性地暗示了同线性龙格-Kutta 方法的隐含部分。 在本文中,我们引入了以下几个概念:龙格-Kutta 基本方法的稳定性,以及为了适应进化PDE 环境所需的额外变量的明显步骤。我们证明这些线性隐性方法在这一PDE 设置中高度趋同的主要理论。我们用以前引入的稳定假设作为主要例子,我们使用非线性Schr\'odinger方程式和热性方程式作为主要例子,但我们的结果超越了这两类进化PDE。 我们用数字来说明我们在第1和第2维度中的主要结果,我们将线性隐性方法的效率和从垃圾学的其他方法进行比较。 我们还用数字来说明我们主要结果的稳定性条件的必要性。</s>