The paper tackles the problem of clustering multiple networks, that do not share the same set of vertices, into groups of networks with similar topology. A statistical model-based approach based on a finite mixture of stochastic block models is proposed. A clustering is obtained by maximizing the integrated classification likelihood criterion. This is done by a hierarchical agglomerative algorithm, that starts from singleton clusters and successively merges clusters of networks. As such, a sequence of nested clusterings is computed that can be represented by a dendrogram providing valuable insights on the collection of networks. Using a Bayesian framework, model selection is performed in an automated way since the algorithm stops when the best number of clusters is attained. The algorithm is computationally efficient, when carefully implemented. The aggregation of groups of networks requires a means to overcome the label-switching problem of the stochastic block model and to match the block labels of the graphs. To address this problem, a new tool is proposed based on a comparison of the graphons of the associated stochastic block models. The clustering approach is assessed on synthetic data. An application to a collection of ecological networks illustrates the interpretability of the obtained results.


翻译:本文解决了将多个网络分组的问题,这些网络并不共享同一组的脊椎,而是将多个网络分组为具有类似地形学的网络。提出了基于有限组合的随机区块模型的统计模型方法。通过尽量扩大综合分类可能性标准获得了集群。这是从单吨区块组和相继合并的网络群组开始的等级组合式算法做的。因此,计算嵌套组序列时,可以提供对网络集成的宝贵洞察力。使用巴伊西亚框架,自算法达到最佳组群数时停止算法后,以自动方式进行模型选择。算法是计算效率高的,在仔细实施时,算法是计算效率高的。网络群组群群集需要一种手段,以克服随机区块模型的标签操纵问题,并匹配图形的区块标签。为了解决这一问题,在比较相关区块模型的图解图的基础上,提出了一个新的工具。在合成数据上评估了组合法方法。在收集生态网络结果时应用了生态网络的可判性。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年6月12日
专知会员服务
59+阅读 · 2020年3月19日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
13+阅读 · 2019年11月14日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员