We propose a new method to learn the structure of a Gaussian graphical model with finite sample false discovery rate control. Our method builds on the knockoff framework of Barber and Cand\`{e}s for linear models. We extend their approach to the graphical model setting by using a local (node-based) and a global (graph-based) step: we construct knockoffs and feature statistics for each node locally, and then solve a global optimization problem to determine a threshold for each node. We then estimate the neighborhood of each node, by comparing its feature statistics to its threshold, resulting in our graph estimate. Our proposed method is very flexible, in the sense that there is freedom in the choice of knockoffs, feature statistics, and the way in which the final graph estimate is obtained. For any given data set, it is not clear a priori what choices of these hyperparameters are optimal. We therefore use a sample-splitting-recycling procedure that first uses half of the samples to select the hyperparameters, and then learns the graph using all samples, in such a way that the finite sample FDR control still holds. We compare our method to several competitors in simulations and on a real data set.


翻译:我们提出一种新的方法来学习高斯图形模型的结构, 并使用有限的样本错误的发现率控制。 我们的方法以 Barber 和 Cand ⁇ e} 的淘汰框架为基础, 用于线性模型。 我们通过使用本地( 以节点为基础的) 和全球性( 以绘图为基础的) 步骤, 扩展其图形模型设置方法 : 我们为本地每个节点构建取舍和特征统计, 然后解决全球优化问题, 以确定每个节点的阈值 。 然后我们通过将每个节点的特征统计与其阈值进行比较, 从而得出我们的图表估计结果, 来估计每个节点的相邻。 我们建议的方法非常灵活, 其含义是: 选择取舍的自由, 特征统计, 以及获得最后图表估计的方式。 对于任何给定的数据集, 我们无法先验清这些超分解仪的最佳选择是什么。 因此, 我们使用一个抽样分解循环程序来决定每个节点的阈值, 然后用所有样本来学习图表, 其方法非常灵活, 使得 定样的 FDR 控制仍然维持着。 我们比较我们的方法 和几个竞争者 模拟 。

0
下载
关闭预览

相关内容

《图形模型》是国际公认的高评价的顶级期刊,专注于图形模型的创建、几何处理、动画和可视化,以及它们在工程、科学、文化和娱乐方面的应用。GMOD为其读者提供了经过彻底审查和精心挑选的论文,这些论文传播令人兴奋的创新,传授严谨的理论基础,提出健壮和有效的解决方案,或描述各种主题中的雄心勃勃的系统或应用程序。 官网地址:http://dblp.uni-trier.de/db/journals/cvgip/
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
120+阅读 · 2020年7月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
13+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月4日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
120+阅读 · 2020年7月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
13+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员