Structural causal models postulate noisy functional relations among a set of interacting variables. The causal structure underlying each such model is naturally represented by a directed graph whose edges indicate for each variable which other variables it causally depends upon. Under a number of different model assumptions, it has been shown that this causal graph and, thus also, causal effects are identifiable from mere observational data. For these models, practical algorithms have been devised to learn the graph. Moreover, when the graph is known, standard techniques may be used to give estimates and confidence intervals for causal effects. We argue, however, that a two-step method that first learns a graph and then treats the graph as known yields confidence intervals that are overly optimistic and can drastically fail to account for the uncertain causal structure. To address this issue we lay out a framework based on test inversion that allows us to give confidence regions for total causal effects that capture both sources of uncertainty: causal structure and numerical size of nonzero effects. Our ideas are developed in the context of bivariate linear causal models with homoscedastic errors, but as we exemplify they are generalizable to larger systems as well as other settings such as, in particular, linear non-Gaussian models.


翻译:在一系列不同的模型假设下,已经证明这一因果图表以及由此而产生的因果效应可以从纯粹的观察数据中识别出来。对于这些模型,已经设计了实用的算法来学习图。此外,当图表为人所知时,标准技术可以用来提供因果关系的估计和信任间隔。然而,我们争论说,一种两步方法,首先学习一个图表,然后将图表作为已知的产值信心间隔处理,然后以已知的产值间隔处理,这种间隔过于乐观,并可能严重地无法说明不确定的因果结构。为了解决这一问题,我们根据测试性转换制定了一个框架,使我们能够对总因果效应提供信心区域,既能捕捉到不确定性的来源:因果结构和非零效应的数值大小。我们的想法是在具有同性误差的双变量线性因果模型背景下发展出来的,但是我们把它们作为一般化的系统,作为非线性G型模型,作为其他环境,特别是非线性G型模型。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月6日
Arxiv
0+阅读 · 2021年8月6日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年8月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员