We study quantile trend filtering, a recently proposed method for nonparametric quantile regression with the goal of generalizing existing risk bounds known for the usual trend filtering estimators which perform mean regression. We study both the penalized and the constrained version (of order $r \geq 1$) of univariate quantile trend filtering. Our results show that both the constrained and the penalized version (of order $r \geq 1$) attain the minimax rate up to log factors, when the $(r-1)$th discrete derivative of the true vector of quantiles belongs to the class of bounded variation signals. Moreover we also show that if the true vector of quantiles is a discrete spline with a few polynomial pieces then both versions attain a near parametric rate of convergence. Corresponding results for the usual trend filtering estimators are known to hold only when the errors are sub-Gaussian. In contrast, our risk bounds are shown to hold under minimal assumptions on the error variables. In particular, no moment assumptions are needed and our results hold under heavy-tailed errors. %On the other hand, we prove all our results for a Huber type loss which can be smaller than the mean squared error loss employed for showing risk bounds for usual trend filtering. Our proof techniques are general and thus can potentially be used to study other nonparametric quantile regression methods. To illustrate this generality we also employ our proof techniques to obtain new results for multivariate quantile total variation denoising and high dimensional quantile linear regression.


翻译:我们研究微量趋势过滤,这是最近提出的一种非对称微量回归方法,目标是将现有风险界限普遍化,这是通常趋势过滤的估测器所知道的现有风险界限,进行中度回归。我们既研究受罚和受限版本(按 $r\geq 1 美元排序 ) 的单一微量趋势过滤。我们的结果显示,受限和受罚版本(按 $r\geq 1 美元排序 ) 达到微量率,直到日志系数,而当真量矢量的真正矢量的离散衍生物属于受约束的变异信号类别时。此外,我们还表明,如果真量量量的量矢量是离散的,但有几个多度碎片过滤器过滤,那么,我们通常的变异性在一般的变异性研究中才能维持。我们通常的变异性,因此,我们通常的变异性在一般的变性研究中可以保持。我们通常的变异性,因此,我们通常的变性结果在一般的变性研究中可以保持。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
140+阅读 · 2020年5月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月29日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员