We consider controlling the false discovery rate for testing many time series with an unknown cross-sectional correlation structure. Given a large number of hypotheses, false and missing discoveries can plague an analysis. While many procedures have been proposed to control false discovery, most of them either assume independent hypotheses or lack statistical power. A problem of particular interest is in financial asset pricing, where the goal is to determine which ``factors" lead to excess returns out of a large number of potential factors. Our contribution is two-fold. First, we show the consistency of Fama and French's prominent method under multiple testing. Second, we propose a novel method for false discovery control using double bootstrapping. We achieve superior statistical power to existing methods and prove that the false discovery rate is controlled. Simulations and a real data application illustrate the efficacy of our method over existing methods.


翻译:我们考虑控制假发现率,用未知的跨部门关联结构测试许多时间序列。考虑到大量假设,虚假和缺失的发现会困扰分析。虽然许多程序已经提出控制虚假发现,但大多数程序要么假设独立,要么缺乏统计能力。一个特别感兴趣的问题是金融资产定价问题,目的是确定哪些“因素”导致大量潜在因素的超额回报。我们的贡献是双重的。首先,我们显示了法马和法兰西在多重测试中的主要方法的一致性。第二,我们提出了一种新颖的方法,用双轨制来控制虚假发现。我们对现有方法具有较高的统计能力,并证明虚假发现率得到控制。模拟和真实数据应用显示了我们方法对现行方法的功效。

0
下载
关闭预览

相关内容

专知会员服务
72+阅读 · 2021年5月21日
专知会员服务
14+阅读 · 2021年1月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月2日
Arxiv
11+阅读 · 2021年2月17日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员