Model discovery aims at autonomously discovering differential equations underlying a dataset. Approaches based on Physics Informed Neural Networks (PINNs) have shown great promise, but a fully-differentiable model which explicitly learns the equation has remained elusive. In this paper we propose such an approach by combining neural network based surrogates with Sparse Bayesian Learning (SBL). We start by reinterpreting PINNs as multitask models, applying multitask learning using uncertainty, and show that this leads to a natural framework for including Bayesian regression techniques. We then construct a robust model discovery algorithm by using SBL, which we showcase on various datasets. Concurrently, the multitask approach allows the use of probabilistic approximators, and we show a proof of concept using normalizing flows to directly learn a density model from single particle data. Our work expands PINNs to various types of neural network architectures, and connects neural network-based surrogates to the rich field of Bayesian parameter inference.
翻译:模型发现旨在自发发现数据集背后的不同方程式。基于物理、知情神经网络(PINNs)的方法已经显示了巨大的希望,但明确学习方程式的完全不同的模型仍然难以找到。在本文件中,我们提出这样一种方法,将基于神经网络的替代机器人与斯普尔塞·巴耶斯学习(SBL)相结合。我们首先将PINNs重新解读为多任务模型,利用不确定性应用多任务学习,并表明这会导致包含巴伊西亚回归技术的自然框架。然后我们通过在各种数据集上展示的SBL构建一个强大的模型发现算法。同时,多任务方法允许使用概率近似器,我们展示了使用正常流概念从单粒子数据中直接学习密度模型的证明。我们的工作将PINNs扩展为各种类型的神经网络结构,并将基于神经网络的探测仪连接到海湾参数的丰富领域。