This paper proposes probabilistic conformal prediction (PCP), a predictive inference algorithm that estimates a target variable by a discontinuous predictive set. Given inputs, PCP construct the predictive set based on random samples from an estimated generative model. It is efficient and compatible with either explicit or implicit conditional generative models. Theoretically, we show that PCP guarantees correct marginal coverage with finite samples. Empirically, we study PCP on a variety of simulated and real datasets. Compared to existing methods for conformal inference, PCP provides sharper predictive sets.
翻译:本文建议了概率一致预测(PCP),这是一种预测性推断算法,用不连续的预测集来估计目标变量。根据投入,五氯苯酚根据估计基因模型的随机样本构建了预测集,高效且与明示或默示的有条件基因化模型兼容。理论上,我们证明五氯苯酚保证了有限样本的准确边际覆盖。有规律的是,我们在各种模拟和真实数据集中研究五氯苯酚。与现有的符合性推断方法相比,五氯苯酚提供了更清晰的预测集。