Systems biology seeks to create math models of biological systems to reduce inherent biological complexity and provide predictions for applications such as therapeutic development. However, it remains a challenge to determine which math model is correct and how to arrive optimally at the answer. We present an algorithm for automated biological model selection using mathematical models of systems biology and likelihood free inference methods. Our algorithm shows improved performance in arriving at correct models without a priori information over conventional heuristics used in experimental biology and random search. This method shows promise to accelerate biological basic science and drug discovery.
翻译:系统生物学试图创造生物系统的数学模型,以减少固有的生物复杂性,并为治疗性发展等应用提供预测,然而,确定哪些数学模型正确,如何最佳地找到答案,仍然是一项挑战。我们提出了使用系统生物学数学模型和可能性自由推断方法进行自动生物模型选择的算法。我们的算法显示,在不事先了解实验生物学和随机搜索中使用的常规黑素学的情况下,获得正确模型的性能有所提高。这种方法显示了加速生物基础科学和药物发现的前景。