We give the first efficient algorithm for learning halfspaces in the testable learning model recently defined by Rubinfeld and Vasilyan (2023). In this model, a learner certifies that the accuracy of its output hypothesis is near optimal whenever the training set passes an associated test, and training sets drawn from some target distribution -- e.g., the Gaussian -- must pass the test. This model is more challenging than distribution-specific agnostic or Massart noise models where the learner is allowed to fail arbitrarily if the distributional assumption does not hold. We consider the setting where the target distribution is Gaussian (or more generally any strongly log-concave distribution) in $d$ dimensions and the noise model is either Massart or adversarial (agnostic). For Massart noise our tester-learner runs in polynomial time and outputs a hypothesis with error $\mathsf{opt} + \epsilon$, which is information-theoretically optimal. For adversarial noise our tester-learner has error $\tilde{O}(\mathsf{opt}) + \epsilon$ and runs in quasipolynomial time. Prior work on testable learning ignores the labels in the training set and checks that the empirical moments of the covariates are close to the moments of the base distribution. Here we develop new tests of independent interest that make critical use of the labels and combine them with the moment-matching approach of Gollakota et al. (2023). This enables us to simulate a variant of the algorithm of Diakonikolas et al. (2020) for learning noisy halfspaces using nonconvex SGD but in the testable learning setting.
翻译:我们给出了第一个用于学习测试学习模型中半空的高效算法, 测试模型最近由Rubinfeld 和 Vasilyan (2023年) 定义。 在这个模型中, 学习者可以证明, 当培训设置通过相关测试时, 其输出假设的准确性接近最佳, 而从某些目标分布中( 例如 Gaussian) 抽取的培训组则必须通过测试。 这个模型比分配特异性或Massart 噪音模型更具挑战性, 如果分布性假设不维持的话, 学习者可以任意失败。 我们考虑的是, 目标分布的设置, $( 或者更一般地说, 任何强烈的日志- 配置分布模式) 的准确性, 而噪音模型是 Massart 或 对抗性( Qaussiansians) 测试组( 例如 Gausart ), 我们的测试 - Lesalways, 也就是在Sliversalalal- Procial 测试中, 将Sliveralal- liveralaldealdeal kestal kestal) 的 和 estal trestestal trestal train train 。 ( roisal) rodustrisal) 。 在Sloding roduding roduding rodudeal disleval disl) rodudal disal disportalds disal dislevol 上,, rodu, rodu 和 producessald.</s>