Personalized natural language generation for explainable recommendations plays a key role in justifying why a recommendation might match a user's interests. Existing models usually control the generation process by soft constraints (e.g.,~aspect planning). While promising, these methods struggle to generate specific information correctly, which prevents generated explanations from being informative and diverse. In this paper, we propose UCEpic, an explanation generation model that unifies aspect planning and lexical constraints for controllable personalized generation. Specifically, we first pre-train a non-personalized text generator by our proposed robust insertion process so that the model is able to generate sentences containing lexical constraints. Then, we demonstrate the method of incorporating aspect planning and personalized references into the insertion process to obtain personalized explanations. Compared to previous work controlled by soft constraints, UCEpic incorporates specific information from keyphrases and then largely improves the diversity and informativeness of generated explanations. Extensive experiments on RateBeer and Yelp show that UCEpic can generate high-quality and diverse explanations for recommendations.
翻译:个人化的自然语言生成可解释性建议在解释某项建议为何与用户利益相匹配方面起着关键作用。现有的模型通常通过软约束(例如~sect plan)来控制生成过程。这些方法虽然很有希望,但却在努力正确地生成具体信息,从而防止产生信息资料和多样性的解释性解释性解释性建议。在本文中,我们提议了一种解释性生成模型UCEpic,它统一了可控个人化生成的规划和词汇性限制的内容。具体地说,我们首先通过我们提议的强健插入程序对非个人化文本生成器进行了培训,以便模型能够生成含有词汇限制的句子。然后,我们展示了将方方面面规划和个性化引用纳入插入过程以获得个化解释的方法。与以往由软约束所控制的工作相比,UCEPicic综合了关键词中的具体信息,然后大大改进了生成的解释性解释的多样性和信息性。关于RateBeber和Yelp的广泛实验表明,UCEEpic可以产生高质量和多样化的解释性解释。