Recommender systems can automatically recommend users with items that they probably like. The goal of them is to model the user-item interaction by effectively representing the users and items. Existing methods have primarily learned the user's preferences and item's features with vectorized embeddings, and modeled the user's general preferences to items by the interaction of them. In fact, users have their specific preferences to item attributes and different preferences are usually related. Therefore, exploring the fine-grained preferences as well as modeling the relationships among user's different preferences could improve the recommendation performance. Toward this end, we propose a dual preference distribution learning framework (DUPLE), which aims to jointly learn a general preference distribution and a specific preference distribution for a given user, where the former corresponds to the user's general preference to items and the latter refers to the user's specific preference to item attributes. Notably, the mean vector of each Gaussian distribution can capture the user's preferences, and the covariance matrix can learn their relationship. Moreover, we can summarize a preferred attribute profile for each user, depicting his/her preferred item attributes. We then can provide the explanation for each recommended item by checking the overlap between its attributes and the user's preferred attribute profile. Extensive quantitative and qualitative experiments on six public datasets demonstrate the effectiveness and explainability of the DUPLE method.


翻译:推荐人系统可以自动建议用户使用他们可能喜欢的项目。 他们的目标是通过有效代表用户和项目来模拟用户项目互动。 现有的方法主要是通过传介嵌入学习用户的偏好和项目特性,并通过它们的互动来模拟用户对项目的一般偏好。 事实上, 用户对项目属性有其特定偏好, 不同的偏好通常是相关的。 因此, 探索细微偏好以及用户不同偏好之间关系的模型可以改进建议性能。 为此, 我们提出双重优惠分配学习框架( DUPLE), 目的是共同学习用户对特定用户的普遍偏好分布和特定偏好分布, 前者与用户对项目的一般偏好相对, 而后者则与用户对项目属性的具体偏好相对应。 值得注意的是, 每个高斯分布的平均值可以捕捉用户的偏好, 以及变量可以学习他们的关系。 此外, 我们可以总结每个用户的首选属性配置, 描述他/ 她喜欢的项目属性。 然后, 我们可以提供每个用户对质量选择的属性 的定性 解释 。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员