In this paper we analyze the Schwarz alternating method for unconstrained elliptic optimal control problems. We discuss the convergence properties of the method in the continuous case first and then apply the arguments to the finite difference discretization case. In both cases, we prove that the Schwarz alternating method is convergent if its counterpart for an elliptic equation is convergent. Meanwhile, the convergence rate of the method for the elliptic equation under the maximum norm also gives a uniform upper bound (with respect to the regularization parameter $\alpha$) of the convergence rate of the method for the optimal control problem under the maximum norm of proper error merit functions in the continuous case or vectors in the discrete case. Our numerical results corroborate our theoretical results and show that with $\alpha$ decreasing to zero, the method will converge faster. We also give some exposition of this phenomenon.
翻译:在本文中,我们分析了用于未受限制的椭圆最佳控制问题的 Schwarz 交替法。 我们首先讨论该方法在连续情况中的趋同特性, 然后将参数应用到有限的差异分解情况中。 在这两种情况下, 我们证明Schwarz 交替法是趋同的, 如果对等的椭圆方程式是趋同的。 同时, 在最高规范下, 椭圆方程方法的趋同率也使在连续情况中最佳控制问题方法的趋同率( 在正规化参数 $\alpha$ 方面) 在适当差错的最大规范下, 最佳控制问题方法的趋同率( $\ alpha$ ) 在离异情况中, 值得发挥作用。 我们的数字结果证实了我们的理论结果, 并表明如果美元减为零, 该方法会更快地趋同。 我们还对这一现象作了一些解释。