In this study, we propose a cross-domain multi-objective speech assessment model, i.e., the MOSA-Net, which can estimate multiple speech assessment metrics simultaneously. More specifically, the MOSA-Net is designed to estimate speech quality, intelligibility, and distortion assessment scores based on a test speech signal as input. It comprises a convolutional neural network and bidirectional long short-term memory (CNN-BLSTM) architecture for representation extraction, as well as a multiplicative attention layer and a fully-connected layer for each assessment metric. In addition, cross-domain features (spectral and time-domain features) and latent representations from self-supervised learned models are used as inputs to combine rich acoustic information from different speech representations to obtain more accurate assessments. Experimental results reveal that the MOSA-Net can precisely predict perceptual evaluation of speech quality (PESQ), short-time objective intelligibility (STOI), and speech distortion index (SDI) scores when tested on both noisy and enhanced speech utterances under either seen test conditions (where the test speakers and noise types are involved in the training set) or unseen test conditions (where the test speakers and noise types are not involved in the training set). In light of the confirmed prediction capability, we further adopt the latent representations of the MOSA-Net to guide the speech enhancement (SE) process and derive a quality-intelligibility (QI)-aware SE (QIA-SE) approach accordingly. Experimental results show that QIA-SE provides superior enhancement performance compared with the baseline SE system in terms of objective evaluation metrics and qualitative evaluation test.


翻译:在本研究中,我们提出了一个跨部多目标语音评估模型,即MOSA-Net,可以同时估计多种语音评估指标;更具体地说,MOSA-Net旨在根据测试语音信号作为输入,估算语音质量、智能和扭曲评估分数;它包括一个动态神经网络和双向长期短期内存(CNN-BLSTM)代表提取结构,以及一个重复关注层和每个评估指标的完全连接层;此外,跨部特征(光谱和时空特征)和由自我监督的学习模型产生的潜在表现,被用作投入,将不同语音表述的丰富的声学信息结合起来,以获得更准确的评估;实验结果表明,MOSA-Net可以准确预测对语音质量的感知性评价(PESQ)、短期目标感知性(STOI)和语音扭曲指数(SDI),在所看到的测试条件下(在测试质量和时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
已删除
将门创投
4+阅读 · 2017年7月7日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Teacher-Student Training for Robust Tacotron-based TTS
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
已删除
将门创投
4+阅读 · 2017年7月7日
Top
微信扫码咨询专知VIP会员