Recently, researchers have turned their attention to recommender systems that use only minimal necessary data. This trend is informed by the idea that recommender systems should use no more user interactions than are needed in order to provide users with useful recommendations. In this position paper, we make the case for applying the idea of minimal necessary data to recommender systems that use user reviews. We argue that the content of individual user reviews should be subject to minimization. Specifically, reviews used as training data to generate recommendations or reviews used to help users decide on purchases or consumption should be automatically edited to contain only the information that is needed.
翻译:最近,研究人员把注意力转向只使用最起码必要数据的建议系统,这一趋势源于这样一种想法,即建议系统不应使用比需要更多的用户互动,以便向用户提供有用的建议。在本立场文件中,我们主张应用最起码必要数据的想法来建议使用用户审查的系统。我们主张应尽量减少个别用户审查的内容。具体地说,应自动编辑审查作为培训数据,以产生建议或审查,帮助用户决定购买或消费,仅包含所需的信息。